61 research outputs found

    Basic statistics for probabilistic symbolic variables: a novel metric-based approach

    Full text link
    In data mining, it is usually to describe a set of individuals using some summaries (means, standard deviations, histograms, confidence intervals) that generalize individual descriptions into a typology description. In this case, data can be described by several values. In this paper, we propose an approach for computing basic statics for such data, and, in particular, for data described by numerical multi-valued variables (interval, histograms, discrete multi-valued descriptions). We propose to treat all numerical multi-valued variables as distributional data, i.e. as individuals described by distributions. To obtain new basic statistics for measuring the variability and the association between such variables, we extend the classic measure of inertia, calculated with the Euclidean distance, using the squared Wasserstein distance defined between probability measures. The distance is a generalization of the Wasserstein distance, that is a distance between quantile functions of two distributions. Some properties of such a distance are shown. Among them, we prove the Huygens theorem of decomposition of the inertia. We show the use of the Wasserstein distance and of the basic statistics presenting a k-means like clustering algorithm, for the clustering of a set of data described by modal numerical variables (distributional variables), on a real data set. Keywords: Wasserstein distance, inertia, dependence, distributional data, modal variables.Comment: 19 pages, 3 figure

    Multiple factor analysis of distributional data

    Full text link
    In the framework of Symbolic Data Analysis (SDA), distribution-variables are a particular case of multi-valued variables: each unit is represented by a set of distributions (e.g. histograms, density functions or quantile functions), one for each variable. Factor analysis (FA) methods are primary exploratory tools for dimension reduction and visualization. In the present work, we use Multiple Factor Analysis (MFA) approach for the analysis of data described by distributional variables. Each distributional variable induces a set new numeric variable related to the quantiles of each distribution. We call these new variables as \textit{quantile variables} and the set of quantile variables related to a distributional one is a block in the MFA approach. Thus, MFA is performed on juxtaposed tables of quantile variables. \\ We show that the criterion decomposed in the analysis is an approximation of the variability based on a suitable metrics between distributions: the squared L2L_2 Wasserstein distance. \\ Applications on simulated and real distributional data corroborate the method. The interpretation of the results on the factorial planes is performed by new interpretative tools that are related to the several characteristics of the distributions (location, scale and shape).Comment: Accepted from STATSTICA APPLICATA: Italian Journal of Applied Statistics on 12/201

    Analysis of the Distribution of Participation in Wikis Using the Gini Coefficient, the Frequency Distribution and the Lorenz Curve

    Get PDF
    Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEpu

    Dynamic Clustering of Histogram Data Based on Adaptive Squared Wasserstein Distances

    Full text link
    This paper deals with clustering methods based on adaptive distances for histogram data using a dynamic clustering algorithm. Histogram data describes individuals in terms of empirical distributions. These kind of data can be considered as complex descriptions of phenomena observed on complex objects: images, groups of individuals, spatial or temporal variant data, results of queries, environmental data, and so on. The Wasserstein distance is used to compare two histograms. The Wasserstein distance between histograms is constituted by two components: the first based on the means, and the second, to internal dispersions (standard deviation, skewness, kurtosis, and so on) of the histograms. To cluster sets of histogram data, we propose to use Dynamic Clustering Algorithm, (based on adaptive squared Wasserstein distances) that is a k-means-like algorithm for clustering a set of individuals into KK classes that are apriori fixed. The main aim of this research is to provide a tool for clustering histograms, emphasizing the different contributions of the histogram variables, and their components, to the definition of the clusters. We demonstrate that this can be achieved using adaptive distances. Two kind of adaptive distances are considered: the first takes into account the variability of each component of each descriptor for the whole set of individuals; the second takes into account the variability of each component of each descriptor in each cluster. We furnish interpretative tools of the obtained partition based on an extension of the classical measures (indexes) to the use of adaptive distances in the clustering criterion function. Applications on synthetic and real-world data corroborate the proposed procedure

    Linear regression for numeric symbolic variables: an ordinary least squares approach based on Wasserstein Distance

    Full text link
    In this paper we present a linear regression model for modal symbolic data. The observed variables are histogram variables according to the definition given in the framework of Symbolic Data Analysis and the parameters of the model are estimated using the classic Least Squares method. An appropriate metric is introduced in order to measure the error between the observed and the predicted distributions. In particular, the Wasserstein distance is proposed. Some properties of such metric are exploited to predict the response variable as direct linear combination of other independent histogram variables. Measures of goodness of fit are discussed. An application on real data corroborates the proposed method
    • …
    corecore